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Abstract
Recent studies on the phenomenology of ageing in certain many-particle
systems which are at a critical point of their non-equilibrium steady states
are reviewed. Examples include the contact process, the parity-conserving
branching-annihilating random walk, two exactly solvable particle reaction
models and kinetic growth models. While the generic scaling descriptions
known from magnetic systems can be taken over, some of the scaling relations
between the ageing exponents are no longer valid. In particular, there is no
obvious generalization of the universal limit fluctuation–dissipation ratio. The
form of the scaling function of the two-time response function is compared with
the prediction of the theory of local scale-invariance.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Symmetry principles have been extremely useful for the understanding of complex many-body
systems, where the interactions between the degrees of freedom are sufficiently strong as to
render perturbative methods inapplicable. Here we are interested in the slow non-equilibrium
dynamics shown by many-body systems which are rapidly brought out from some initial state
(‘quenched’) to a region in phase space where either the equilibrium state naturally generates
a slow dynamics (this is for example realized for systems at a critical point) or else into a
coexistence region dominated by several equivalent stationary states. One of the essential
features of such systems is that their properties depend on their ‘age’, that is the time elapsed
since the quench. Of course, any biological system ages, but there is also ‘physical ageing’
which arises even if the underlying microscopic dynamics is completely reversible. One might
formally define ageing by this breaking of time-translation invariance, associated with a slow

1 Laboratoire associé au CNRS UMR 7556.
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dynamics which generically leads to some form of dynamical scaling. Physical ageing was
originally seen to occur in glassy systems [120] and has been used since prehistoric times
by engineers in the processing of materials. Quite recently, it has been realized that very
similar phenomena can also be found in simple magnets, without disorder or frustrations. The
study of these supposedly simpler systems may lead to conceptual insights which in turn could
become also fruitful in more complex systems. The topic has been under intensive study;
see [19, 33, 52, 32, 65, 84, 24, 68, 47, 70] for reviews. The reversibility of the microdynamics
in systems undergoing physical ageing means that their stationary states are equilibrium states.
In numerical simulations of such systems this is realized by choosing the dynamics such as to
satisfy detailed balance. In many systems undergoing physical ageing, detailed balance and
consequently the relaxation towards equilibrium steady states is taken for granted, as there are
many textbook proofs [123, 129] of detailed balance for closed, isolated systems.

On the other hand, it has become increasingly clear from studies in anomalous chemical
kinetics that several of the constitutive properties of ageing are naturally met in many situations.
First, it is well known that fluctuation effects may lead to slow, non-exponential relaxation in
irreversible chemical reactions—not accounted for by mean-field schemes; see e.g. [117, 64]
for reviews and references therein. Second, it was understood more recently through the work
of Oshanin and collaborators [97, 98, 6, 31, 124, 125] that even for reversible reactions a slow,
non-exponential relaxation may generically occur without the fine-tuning of parameters and
furthermore, that the steady states to which relaxation occurs depend on the kinetic coefficients
and hence cannot be equilibrium states. Consequently, detailed balance cannot be valid in these
systems. While in these studies long-range interactions (as they may naturally arise in reactions
of large molecules or in studies of radiation damage [6]) play an essential rôle, detailed balance
need not be satisfied even in kinetic systems with contact interactions. For example, in the
system defined by the simultaneous reversible reactions 2A ←→ ∅, 2A ←→ A, A ←→ ∅
with diffusive motion of single particles, detailed balance only holds if certain conditions on
the reaction rates are met [4]. Since detailed balance is already found to be broken in very
simple reactions such as 2A ←→ B [124, 125] or A + B −→ ∅ [6, 31], it is conceivable
that the phenomenon might be much more common. Furthermore, since sometime a slow
relaxation in kinetic models is brought into relationship with glassy dynamics [90], it is of
interest to investigate to what extent the three essential properties of physical ageing—slow
dynamics, dynamical scaling and breaking of time-translation invariance—are actually realized
in chemical kinetics.

Therefore, we shall review here recent progress about ageing in many-body systems with
a more general dynamics where detailed balance is no longer required to hold and therefore
non-equilibrium steady states may arise. Since there are as yet only a few studies available
on these systems, comparison with ageing in simple magnets should be a useful guide.
For a similar reason, we shall investigate the behaviour of models whose physical origin is
very different, which should lead to some insight about generic properties. Because of the
possibility of non-equilibrium steady states, the systems under consideration here are closer
to biological/chemical ageing than those considered up to now in studies of physical ageing.
Remarkably, there is evidence that some dynamical symmetries recently discovered in physical
ageing may also extend to this more general class of systems.

We shall define the systems we want to study in the next section. Before we come to
that, however, we shall briefly recall for reference some of the main results about the ageing
of simple magnets. We assume throughout that the order parameter is non-conserved by the
dynamics and that the initial state is totally disordered, unless explicitly stated otherwise.
Besides the breaking of time-translation invariance, ageing systems are often characterized
by dynamical scaling. It has become common to study ageing behaviour through the two-time
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Figure 1. (a) Ageing and (b) dynamical scaling of the two-time autocorrelation function C(t, s)
in the 3D Glauber–Ising model quenched to T = 3 < Tc, for several values of the waiting time
s [105].

autocorrelation and (linear) autoresponse functions

C(t, s) = 〈φ(t, r)φ(s, r)〉 ∼ s−b fC(t/s) (1)

R(t, s) = δ〈φ(t, r)〉
δh(s, r)

∣
∣
∣
∣
h=0

∼ s−1−a fR(t/s) (2)

where φ(t, r) is the order parameter at time t and location r and h(s, r) is the conjugate
magnetic field at time s and location r. The scaling behaviour is expected to apply in the
so-called ageing regime where t, s � tmicro and t − s � tmicro, where tmicro is a microscopic
time-scale. We illustrate this in figure 1, which shows the autocorrelation function C(t, s) of the
three-dimensional (3D) Ising model with (non-conserved) Glauber dynamics3 [49] quenched
from a fully disordered initial state to a temperature T < Tc. When plotting the data against
t − s, we see that the data depend on both t − s and s; hence time-translation invariance is
broken and the system ages. Further, with increasing values of the waiting time s, the system
becomes ‘stiffer’ and a plateau close to the equilibrium value Ceq = M2

eq develops when t − s
is not too large before the correlations fall off rapidly when t − s → ∞. When replotting
the same data against t/s, a data collapse is found if s is large enough, which is evidence for
dynamical scaling.

The distance of such systems from a global equilibrium state can be measured through the
fluctuation–dissipation ratio, defined as [34]

X (t, s) := T R(t, s)

(
∂C(t, s)

∂s

)−1

. (3)

At equilibrium, X (t, s) = 1 from the fluctuation–dissipation theorem. One often considers the
limit fluctuation–dissipation ratio X∞ := lims→∞(limt→∞ X (t, s)).4 For quenches to below
Tc, one usually has X∞ = 0 but for critical quenches onto T = Tc, it has been argued by
Godrèche and Luck that X∞ should be a universal number [51], since it can be written as a
ratio of two scaling amplitudes. This universality has been thoroughly confirmed for systems
relaxing towards equilibrium steady states; see [32, 24] for recent reviews.

3 Recall that the zero-temperature Glauber model can be mapped, via a duality transformation [118] or a similarity
transformation [111], to the kinetic model 2A −→ ∅ with single-particle diffusion.
4 The order of the limits is crucial, since limt→∞(lims→∞ X (t, s)) = 1.
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Figure 2. Snapshots from the 2D Glauber–Ising model quenched to T = Tc from a disordered
initial state at (left panel) t = 25 and (right panel) t = 275 Monte Carlo time steps after the
quench [105].

Furthermore, in writing equations (1), (2) it was tacitly assumed that the scaling derives
from the algebraic time-dependence of a single characteristic length-scale L(t) ∼ t1/z which
measures the linear size of correlated or ordered clusters and where z is the dynamic exponent.
For a 2D Glauber–Ising model quenched to T = Tc the growth of correlated clusters is
illustrated in figure 2 where the black/white sites represent the two states of the Ising spins.
Then the above forms define the non-equilibrium exponents a and b and the scaling functions
fC(y) and fR(y). For large arguments y → ∞, one generically expects

fC (y) ∼ y−λC/z, fR(y) ∼ y−λR/z (4)

where λC and λR , respectively, are known as autocorrelation [46, 79] and autoresponse
exponents [103]. While in non-disordered magnets with short-ranged initial conditions one
usually has λC = λR , this is not necessarily so if either of these conditions is relaxed. From
a field-theoretical point of view it is known that for a non-conserved order parameter the
calculation of λC,R requires an independent renormalization and hence one cannot expect to
find a scaling relation between these and equilibrium exponents (including z) [81]. On the
other hand, the values of the exponents a and b are known. For quenches to T = Tc, the
relevant length-scale is set by the time-dependent correlation length L(t) ∼ ξ(t) ∼ t1/z and
this leads to a = b = (d − 2 +η)/z, where η is a standard equilibrium exponent. For quenches
into the ordered phase T < Tc, one usually observes simple scaling of C(t, s) = fC(t/s);
hence b = 0.5 The value of a depends on whether the equilibrium correlator is short- or long-
ranged, respectively. These may be referred to as classes S and L, respectively and one has, see
e.g. [30, 59, 63],

Ceq(r) ∼
{

e−|r|/ξ

|r|−(d−2+η) 
⇒
{

class S

class L

⇒ a =

{

1/z

(d − 2 + η)/z
. (5)

Examples for short-ranged models (class S) include the Ising or Potts models in d > 1
dimensions (and T < Tc), while all systems quenched to criticality, or the spherical model
or the 2D XY model below the Kosterlitz–Thouless transition are examples for long-ranged
systems (class L).

In equilibrium critical phenomena, it is well known that the standard scale-invariance can,
under quite weak conditions, be extended to a conformal invariance. Roughly, a conformal

5 This needs no longer be the case when the ageing close to a free surface is considered [10].
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transformation is a scale transformation r �→ br with a space-dependent rescaling factor
b = b(r) (such that angles are kept unchanged). In particular, in two dimensions conformal
invariance allows us to derive from the representation theory of the conformal (Virasoro)
algebra the possible values of the critical exponents, to set up a list of possible universality
classes, calculate explicitly all n-point correlation functions and so on [16, 28]. One might
wonder whether a similar extension might be possible at least in some instances of dynamical
scaling and further ask whether response functions or correlation functions might be found
from their covariance under some generalized dynamical scaling with a space–time-dependent
rescaling factor b = b(t, r) [56, 58]. We shall discuss the question here in the specific context
of ageing and shall focus on what can be said about the scaling functions fC,R(y) in a model-
independent way.

A useful starting point is to consider the symmetries of the free diffusion (or free
Schrödinger) equation

2M∂tφ = �φ (6)

where � = ∇ · ∇ is the spatial Laplacian and the ‘mass’ M can be seen as a kinetic
coefficient. Indeed, it was already shown by Lie more than a century ago that this equation has
more symmetries than the trivial translation and rotation invariances. Consider the so-called
Schrödinger group defined through the space–time transformations

t �→ t ′ = αt + β

γ t + δ
; r �→ r′ = Rr + vt + a

γ t + δ
, αδ − βγ = 1 (7)

where α, β, γ, δ,v,a are real (vector) parameters and R is a rotation matrix in d spatial
dimensions. The group acts projectively on a solution φ of the diffusion equation through
(t, r) �→ g(t, r), φ �→ Tgφ

(

Tgφ
)

(t, r) = fg(g−1(t, r)) φ(g−1(t, r)) (8)

where g is an element of the Schrödinger group and the companion function reads [95, 102]

fg(t, r) = (γ t + δ)−d/2 exp

[

−M
2

γ r2 + 2Rr · (γa − δv) + γa2 − tδv2 + 2γa ·v

γ t + δ

]

. (9)

It is then natural also to include arbitrary phase shifts of the wavefunction φ within the
Schrödinger group Sch(d). In what follows, we denote by schd the Lie algebra of Sch(d).
The Schrödinger group so defined is the largest group which maps any solution of the free
Schrödinger equation (with M fixed) onto another solution. This is easily seen in d = 1 by
introducing the Schrödinger operator

S := 2M0Y−1 − Y 2
−1/2. (10)

The Schrödinger Lie algebra sch1 = 〈X−1,0,1, Y− 1
2 , 1

2
, M0〉 is spanned by the infinitesimal

generators of temporal and spatial translations (X−1, Y−1/2), Galilei transformations (Y1/2),
phase shifts (M0), space–time dilatations with z = 2 (X0) and so-called special transformations
(X1). Explicitly, the generators read [56]

Xn = −tn+1∂t − n + 1

2
tnr∂r − n(n + 1)

4
Mtn−1r 2 − x

2
(n + 1)tn

Ym = −tm+1/2∂r − (

m + 1
2

)Mtm−1/2r

Mn = −Mtn .

(11)

Here x is the scaling dimension and M is the mass of the scaling operator φ on which these
generators act. The non-vanishing commutation relations are

[Xn, Xn′ ] = (n − n′)Xn+n′, [Xn, Ym] =
(n

2
− m

)

Yn+m

[Xn, Mn′ ] = −n′Mn+n′ , [Ym, Ym′ ] = (m − m ′)Mm+m′ .
(12)
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The invariance of the diffusion equation under the action of sch1 is now seen from the following
commutators which follow from the explicit form (11)

[S, X−1
] = [S, Y±1/2

] = [S, M0] = 0

[S, X0] = −S, [S, X1] = −2tS − (2x − 1)M0.
(13)

Therefore, for any solution φ of the Schrödinger equation Sφ = 0 with scaling dimension x =
1/2, the infinitesimally transformed solution Xφ with X ∈ sch1 also satisfies the Schrödinger
equation SXφ = 0 [83, 95, 55]. For applications to ageing, we must consider so-called
ageing algebra age1 = 〈X0,1, Y− 1

2 , 1
2
, M0〉 ⊂ sch1 (without time translations) which is a true

subalgebra of sch1 [60]. Extensions to d > 1 are straightforward.
What is the usefulness of knowing dynamical symmetries of free, simple diffusion for

the understanding of non-equilibrium kinetics? One way of setting up the problem would be
to write down a stochastic Langevin equation for the order parameter. The simplest case is
usually considered to be a dynamics without macroscopic conservation laws (model A), where
one would have [76]

2M∂φ

∂ t
= �φ − δV[φ]

δφ
+ η (14)

where V is the Ginzburg–Landau potential and η is a Gaussian noise which describes the
coupling to an external heat-bath and the initial distribution of φ. At first sight, there appear
to be no non-trivial symmetries, because (14) cannot be Galilei invariant, because of the
noise term η. To understand this physically, consider a magnet which is at rest with respect
to a homogeneous heat-bath at temperature T . If the magnet is moved with a constant
velocity with respect to the heat-bath, the effective temperature will now appear to be direction
dependent, and the heat-bath is no longer homogeneous. However, this difficulty can be
avoided as follows [104]: split the Langevin equation into a ‘deterministic’ part with non-trivial
symmetries and a ‘noise’ part and then show using these symmetries that all averages can be
reduced exactly to averages within the deterministic, noiseless theory. Technically, one first
constructs in the standard fashion (Janssen–de Dominicis procedure) [35, 82] the associated
stochastic field theory with action J [φ, φ̃] where φ̃ is the response field associated to the order
parameter φ. Second, one decomposes the action into two parts

J [φ, φ̃] = J0[φ, φ̃] + Jb[φ̃] (15)

where

J0[φ, φ̃] =
∫

R+×Rd

dt dr φ̃

(

2M∂tφ − �φ + δV
δφ

)

(16)

contains the terms coming from the ‘deterministic’ part of the Langevin equation (V is the
self-interacting ‘potential’) whereas

Jb[φ̃] = −T
∫

R+×Rd
dt dr φ̃(t, r)2 − 1

2

∫

R2d
dr dr′ φ̃(0, r)a(r − r′)φ̃(0, r′) (17)

contains the ‘noise’ terms coming from (14) [82]. It was assumed here that 〈φ(0, r)〉 = 0 and
a(r) denotes the initial two-point correlator

a(r) := C(0, 0; r + r′, r′) = 〈φ(0, r + r′)φ(0, r′)〉 = a(−r) (18)

while the last relation follows from spatial translation invariance which we shall admit
throughout.

It is instructive to consider briefly the case of a free field, where V = 0. Variation of (15)
with respect to φ̃ and φ, respectively, then leads to the equations of motion

2M∂tφ = �φ + T φ̃, −2M∂t φ̃ = �φ̃. (19)

6
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The first one of those might be viewed as a Langevin equation if φ̃ is interpreted as a noise.
Comparison of the two equations of motion (19) shows that if the order parameter φ is
characterized by the ‘mass’ M (which by physical convention is positive), then the associated
response field φ̃ is characterized by the negative mass −M. This characterization remains valid
beyond free fields.

We now concentrate on actions J0[φ, φ̃] which are Galilei invariant. This means that if 〈·〉0

denotes the averages calculated only with the action J0, the Bargman superselection rules [7]
〈

φ . . . φ
︸ ︷︷ ︸

n

φ̃ . . . φ̃
︸ ︷︷ ︸

m

〉

0

∼ δn,m (20)

hold true. It follows that both response and correlation functions can be exactly expressed in
terms of averages with respect to the deterministic part alone. For example (we suppress for
notational simplicity the spatial coordinates) [104]

R(t, s) = δ〈φ(t)〉
δh(s)

∣
∣
∣
∣
h=0

= 〈φ(t)φ̃(s)〉 = 〈φ(t)φ̃(s) e−Jb[φ̃]〉0 = 〈φ(t)φ̃(s)〉0 (21)

where the ‘noise’ part of the action was included in the observable and the Bargman
superselection rule (20) was used. In other words, the two-time response function does not
depend explicitly on the ‘noise’ at all. The correlation function is reduced similarly:

C(t, s; r) = T
∫

R+×Rd

du dR
〈

φ(t, r + y)φ(s,y)φ̃(u,R)2
〉

0

+ 1
2

∫

R2d
dR dR′ a(R − R′)

〈

φ(t, r + y)φ(s,y)φ̃(0,R)φ̃(0,R′)
〉

0
. (22)

Only terms which depend explicitly on the ‘noise’ remain—recall the vanishing of the
‘noiseless’ two-point function 〈φ(t)φ(s)〉0 = 0 because of the Bargman superselection rule.

Therefore, the dynamical symmetries of non-equilibrium kinetics are characterized
by the ‘deterministic’ part of the Langevin equation. Such deterministic nonlinear
diffusion/Schrödinger equations with age1 or sch1 as a dynamical symmetry can be explicitly
constructed [119] but we shall not go into the details here. Since all quantities of interest
will reduce to some kind of response function, one may calculate them from the requirement
that they transform covariantly under the action ageing subgroup (with Lie algebra aged)
obtained from the Schrödinger group when leaving out time translations. In this survey, we
shall concentrate on the two-time autoresponse function R(t, s) for which the requirement of
covariance reduces to the two conditions X0 R(t, s) = X1 R(t, s) = 0. Since time translations
are not included in the ageing group, the generators Xn can be generalized from (11) to the
following form:

Xn = −tn+1∂t − n + 1

2
tnr∂r − (n + 1)n

4
Mtn−1r 2 − x

2
(n + 1)tn − ξntn; n � 0 (23)

where ξ is a new quantum number associated with the field φ on which the generators Xn act.
This last term can only be present for systems out of an equilibrium state (the requirement of
time-translation invariance and [X1, X−1] = 2X0 lead to ξ = 0). Solving the two differential
equations for R gives the explicit form of R(t, s); see (26) below.

While this discussion was carried out explicitly for the case z = 2, it is tempting to try
and generalize this idea to more general values of z. In this way, the notion of local scale
transformation has been introduced, which is based on the following main assumptions [58].

(i) In principle, the following conformal time transformations should be included:

t �→ t ′ = αt + β

γ t + δ
; αδ − βγ = 1. (24)

7
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Table 1. Magnetic systems quenched into the coexistence phase (T < Tc) which satisfy (26)
with the exponents a = a′ and λR . d is the spatial dimension and the numbers in brackets
estimate the numerical uncertainty in the last digit(s). In the spherical model, long-range initial
conditions are included and in the long-range spherical model the exchange couplings decay as
Jr ∼ |r|−d−σ . In the bond-disordered Ising model, the couplings are taken homogeneously from
the interval [1 − ε/2, 1 + ε/2]. Then z = z(T, ε) = 2 + ε/T [100, 101] and one observes roughly
1.3 � λR(T, ε) � 1.7.

Model d z a = a′ λR Comments Ref.

Ising 2 2 1/2 1.26(1) [61]
2 2 �0.5 1.24(2) [86, 80]
3 2 1/2 1.60(2) [61]

Potts-3 2 2 0.49 1.19(3) [86, 80]

Potts-8 2 2 0.51 1.25(1) [86, 80]

XY 3 2 0.5 1.7 [2]
XY spin wave �2 2 d/2 − 1 d Angular response [104]

Spherical >2 2 d/2 − 1 (d − α)/2 Cini(r) ∼ |r|−d−α [94, 103]

Long-range >2 σ d/σ − 1 d/2 0 < σ < 2
Spherical �2 σ d/σ − 1 d/2 0 < σ < d [27]

Diluted Ising 2 2 + ε/T 1/z(T, ε) λR(T, ε) Disordered [72]

For applications to ageing, however, time translations generated by β must be left out
(generalizing the restriction schd → aged).

(ii) The generator X0 of scale transformations is

X0 = −t∂t − 1

z
r∂r − x

z
(25)

where x is the scaling dimension of the quasi-primary operator on which X0 is supposed
to act. Physically, this implies that there is a single relevant length-scale L(t) ∼ t1/z .

(iii) Spatial translation invariance is required.

Generators for infinitesimal local scale transformations have been explicitly constructed and it
can be shown that for any value of z there is a linear invariant equation, analogous to (6) [58].
Local scale-invariance (LSI) assumes in particular that the two-time response functions
transform covariantly under these local scale transformations; hence X0 R = X1 R = 0. This
leads to the prediction [58, 104, 69, 71]

R(t, s) = 〈

φ(t)φ̃(s)
〉 = s−1−a fR(t, s), fR(y) = f0 y1+a′−λR/z(y − 1)−1−a′

(26)

where the exponents a, a′, λR/z are related to x, ξ, x̃, ξ̃ and f0 is a normalization constant6.
Starting with [57], the prediction (26) has been reproduced in many different spin systems and
we list examples quenched to below criticality in table 1 and quenched to the critical point in
table 2. For T < Tc, it is found empirically that a = a′ in all examples considered so far.
We point out that agreement with local scale-invariance, equation (26), is not only obtained for
systems where the dynamical exponent is z = 2, but that rather there exist quite a few examples
where z can become considerably larger or smaller than 2. It must be remembered, however,
that the above derivation of (26) for a stochastic Langevin equation has for the time being only
been carried out for7z = 2 and the justification of X0 R = X1 R = 0 remains an open problem

6 We point out that the prediction (26) as well as the explicit form (23) of Xn , valid for z = 2, assume that the mean
order parameter 〈φ(0, r)〉 = m0 = 0 at the initial moment when the quench to T < Tc or T = Tc is made.
7 See section 4 for a recent extension of the method to z = 4.
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Table 2. Systems quenched to a critical point of their stationary state which satisfy (26) with the
exponents a, a′ and λR/z. d is the spatial dimension and the numbers in brackets estimate the
uncertainty in the last digit(s). CSM stands for the spherical model with a conserved order parameter,
FA denotes the Frederikson–Andersen model, NEKIM is the non-equilibrium kinetic Ising model and
BCP and BPCP denote the bosonic contact and pair-contact processes (see equations (45), (48) for the
definitions of the control parameter α and of αC ), respectively. In the spherical model, long-range
initial correlations Cini(r) ∼ |r|−d−α were considered. If d + α > 2, these reduce to short-ranged
initial correlations (denoted S), but for d + α < 2 a new class L arises. In those models described
by a Langevin equation, one has used throughout, with the exception of the CSM, the simple white
noise 〈η(t, r)η(s,r′)〉 = 2T δ(r − r′)δ(t − s).

Model d a a′ − a λR/z Comments Ref.

Random walk −1 0 0 [34]

OJK-model (d − 1)/2 −1/2 d/4 [17, 91, 69]

Ising 1 0 −1/2 1/2 [50, 85, 62]
2 0.115 −0.187(20) 0.732(5) [108, 71]
3 0.506 −0.022(5) 1.36 [108, 71]

XY 3 0.52 0 1.34(5) [2]

Spherical d > 2 <4 d/2 − 1 0 d/2 − α/4 − 1/2 L [103]
>4 d/2 − 1 0 (d − α)/4 + 1/2 L [103]
<4 d/2 − 1 0 3d/4 − 1 S [51]
>4 d/2 − 1 0 d/2 S [51]

CSM >2 d/4 − 1 0 (d + 2)/4 [14]

Disordered Ising 4 − ε 1 − 1
2

√

6ε
53 0 3 − 1

2

√

6ε
53 O(ε), log [23, 115, 116]

FA >2 1 + d/2 −2 2 + d/2 [90]
1 1 −3/2 2 [90, 88]

Ising spin glass 3 0.060(4) −0.76(3) 0.38(2) [66, 69]

Contact process 1 −0.681 +0.270(10) 1.76(5) t/s � 1.1 [41, 75, 71]
>4 d/2 − 1 0 d/2 + 2 [109]

NEKIM 1 −0.430(4) 0 1.9(1) [96]

BCP �1 d/2 − 1 0 d/2 [8]

BPCP >2 d/2 − 1 0 d/2 α � αC [8]

for z �= 2 although the result (26) seems to work remarkably well. Still, it is non-trivial that
a relatively simple extension of dynamical scaling should be capable of making predictions
which can be reproduced in physically quite different systems.

A few comments are still needed: (i) for the XY model in the spin-wave approximation
(table 1), equation (26) holds for the response of the angular variable φ = φ(t, r) which is
related to the XY spin through S = (cos φ, sin φ). Magnetic responses have a different scaling
form [18, 1]. (ii) In the critical disordered Ising model (table 2) one finds a logarithmic scaling
form R(t, s) = (r0 + r1 ln(t − s)) fR(t/s) [23, 115, 116] such that the computed fR(y) is
consistent with (26) to one-loop order, or up to terms of order O(ε). (iii) Finally, a two-loop
calculation of the critical non-conserved O(n)-model does produce in 4 − ε dimensions an
expression for fR(y) which is incompatible with (26) [22], and a similar result is anticipated in
2 + ε dimensions [45], although the one-loop results are still compatible [21, 22, 45]. Should
one conclude from these studies that for T = Tc the prediction (26) and by implication local
scale-invariance can only hold approximately? This might well be a subtle question. Deviations
between (26) and the field-theoretical studies typically arise when t/s ≈ 1. However, in this
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region the field-theoretical results for fR(y) do not agree with the ones of non-perturbative
numerical studies [108]. Since the perturbative expansion usually carried out in field-theoretical
studies does not necessarily take care of the Galilei invariance, it is necessary to carefully check
that the truncation of the ε-series does not introduce slight inaccuracies. Only after this has been
done (for example by resumming the ε-series) and checked by comparing with non-perturbative
data, can meaningful quantitative statements on the scaling functions be made. (iv) Throughout,
it was implicitly assumed that the order parameter vanishes initially. Systematic studies on
what happens when this condition is relaxed are only now becoming available [5, 25, 45].
These extensions might be particularly important for chemical kinetics. (v) We did not include
growth models here but shall discuss them in section 4.

If z = 2, it is also possible, using equation (22), to derive explicit predictions for the
two-time correlation function [104, 67]. These have been tested in some exactly solvable
models [104, 71], the 2D Ising model [67] and the 2D q-states Potts model with q =
2, 3, 8 [86, 80]. Extensions to z = 4 have been studied very recently [110, 14]; see section 4.

This survey is organized as follows. In section 2 we review results on the ageing
behaviour of several critical models with non-equilibrium steady states. The first two models
are chosen because their steady-state phase transitions are in the paradigmatic universality
classes of directed percolation (DP) and in the parity-conserving (PC) universality classes. The
numerical results on these models are supplemented by the exactly solved bosonic variants of
the contact and pair-contact processes. In this way it becomes clear that most aspects of the
scaling description of ageing in simple magnets does carry over to this more general situation.
However, a central issue, namely the definition of an universal limit fluctuation–dissipation
ratio X∞ [51] and which has received so much recent attention in the non-equilibrium critical
dynamics of magnets, see [32, 24] for reviews, does not appear to have an obvious analogue.
Remarkably, the same kind of evidence in favour of a non-trivial extension of dynamical scaling
towards a larger dynamical symmetry group of local scale transformation previously found in
magnets also appears in the models without detailed balance. In section 3, we review in more
detail how the stochastic Langevin equations underlying the bosonic contact and pair-contact
processes can be shown to actually possess a local scale-invariance. These evidences should
form a promising basis to look for more manifestation of local scale-invariance in systems with
dynamical scaling which remain always very far from equilibrium. A different class of non-
equilibrium models is studied in section 4, where kinetic growth as described by the Edwards–
Wilkinson and the Mullins–Herring equations is studied. To account for those models, the
formulation of LSI must be generalized [58] to values z �= 2 of the dynamical exponent. We
consider explicitly the case z = 4 and apply it to the Mullins–Herring model. We conclude in
section 5.

2. Ageing with absorbing steady states

We now describe the ageing behaviour of system without an equilibrium stationary state.
We shall realize this system as models of interacting classical particles, where the stochastic
dynamics is such that the detailed-balance condition no longer holds. For the simple models
we shall consider here it turns out that if the stationary state is not at a critical point, only a
single stable stationary state remains to which the system relaxes within a finite time, and no
ageing is possible. For this reason, we shall study the ageing behaviour at criticality.

We remark that one might also go to non-equilibrium stationary states by considering
driven systems [113]. However, the dynamics of those is more complicated than the systems at
hand because of a further strong spatial anisotropy and the description in terms of local scale-
invariance would require us to generalize the local scale transformations accordingly. That
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Figure 3. Microscopic evolution of clusters in the critical 2D contact process, on a lattice of size
1000 × 1000. The initial condition of the upper series is a full circle with radius 100 placed in the
centre of the lattice, while in the lower series it is a full lattice. The times are t = [2, 20, 200, 2000]
for the upper series and t = [20, 200, 2000, 20 000] below. After [109].

is beyond the scope of this survey. Another very interesting class of ageing non-equilibrium
systems is the zero-range process; see [43, 53] for recent reviews. Because they do not have
a spatial structure which would admit a Galilei invariance, their dynamical scaling cannot be
extended to some form of local scale-invariance and for this reason they are not considered
here, despite their intrinsic interest.

2.1. Contact process

The contact process is a paradigmatic system for the study of non-equilibrium phase transitions;
see e.g. [74] for a review8. The steady-state phase transition of the contact process is in the same
universality class as one of the transitions of the celebrated Ziff–Gulari–Barshad model [128],
which is meant to describe the catalytic reaction 2CO + O2 −→ 2CO2. The model may be
defined in terms of a time-dependent discrete variable ni (t) ∈ {0, 1}, defined on each site i of
a hypercubic lattice, which describe configurations of particles and empty sites. The dynamics
is defined as follows. For each time-step, select randomly a site i of the lattice. If i is occupied
(i.e. ni = 1), that particle vanishes with probability p. Otherwise, with probability 1 − p a new
particle is created on one of the nearest neighbours of i , chosen at random and provided that
chosen site is still empty. Formally, this may be expressed through the reactions A → ∅ and
A → 2A, with rates corresponding to p and 1 − p, respectively. In the steady state, the model
has a continuous phase transition at some critical value pc. Numerically, pc = 0.232 6746(5)

in 1D and pc = 0.377 53(1) in 2D.
A first characteristic of the dynamics of the critical contact process can be seen by looking

at the temporal evolution of certain initial configurations; see figure 3. In contrast to magnetic
systems, see figure 2 for comparison, in the contact process there is no apparent growing length-
scale at all and the evolution proceeds via the slow dissolution of the particle clusters. Cluster
dilution had first been demonstrated to occur in several variants of the two-dimensional voter
model [38] but also occurs in the early stages of surface ageing in simple magnets [106, 107].

In studies of the ageing behaviour, one goes beyond the average particle density N(t) :=
〈ni (t)〉 ∼ t−δ at criticality p = pc. Define the two-time (connected) autocorrelator and

8 Recall that bifurcations arising in many simple models of mathematical biology [93] come from the mean-field
treatment of the phase transition in the contact process.
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Figure 4. Connected autocorrelation function C(t, s) and autoresponse function R(t, s) of the
1D contact process in the active phase (p = 0.1). The straight lines are proportional to
exp(−0.05(t − s)). After [41].

autoresponse functions

C(t, s) := 〈ni (t)ni (s)〉 − 〈ni (t)〉〈ni (s)〉, R(t, s) := δ〈ni (t)〉
δhi(s)

∣
∣
∣
∣
h=0

(27)

where hi (s) is the rate of the spontaneous creation process ∅ → A at site i at time s. These
may be calculated in a standard fashion either from simulations [109, 75] or else from the
transfer-matrix renormalization group [41]. Recent field-theoretical calculations [13] will also
be described.

2.1.1. Active phase. In contrast with simple magnets, where there are two distinct stable
ground states in the low-temperature phase, in the active phase of the contact process there is
only a single stable steady state. Consequently, there is here no breaking of time-translation
invariance and we illustrate this in one dimension in figure 4. After a short transient, the data
for both C(t, s) and R(t, s) collapse when plotted over against t − s which means that the
contact process shows no ageing in its active phase.

2.1.2. Absorbing phase. From the comparison with the high-temperature phase of simple
magnets, one would also expect to find time-translation invariance in the absorbing phase of
the contact process. However, the correlation function shows a subtlety the origin of which
is best understood by considering the case p = 1 first. If p = 1, particles on different sites
are uncorrelated and simply decay with a fixed rate. For any fixed site i and with two times
t > s, it is clear that ni(t)ni (s) = ni(t), since ni ∈ {0, 1}. Hence 〈ni (t)ni (s)〉 = 〈ni (t)〉
and C(t, s) = N(t)(1 − N(s)). For sufficiently long times, C(t, s) will then only depend on
t . Indeed, this behaviour survives in the entire absorbing phase [41]. On the other hand, the
expected time-translation invariance for the autoresponse function is readily checked.

2.1.3. Critical point. For the critical contact process we show in figure 5(a) that ageing does
occur, that is, the autocorrelation and the autoresponse depend on both the observation time t
and the waiting time s. Furthermore, when the same data are replotted over against t/s, a data
collapse after rescaling can be achieved; see figure 5(b). Lattices with a large initial particle
density n ≈ 0.8–1 were used [41, 109, 75]. This is different with respect to the magnetic
systems of section 1, where the order parameter had a vanishing initial value. By analogy with
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Figure 5. Connected autocorrelation function of the critical contact process in one dimension (main
plots) and two dimensions (insets). Panel (a) shows the ageing of the autocorrelation function
and panel (b) illustrates the scaling behaviour. The straight lines correspond to the exponents
λC /z = 1.9 in one dimension and 2.8 in two dimensions. After [109].

Figure 6. Autoresponse function for the critical 1D contact process for several waiting times s. The
data labelled TM come from the transfer matrix renormalization group [41] and MC denotes Monte
Carlo data.

simple magnets, one defines the ageing exponents a, b and the autocorrelation and autoresponse
exponents λC,R from

C(t, s) = s−b fC(t/s), fC(y) ∼ y−λC/z

R(t, s) = s−1−a fR(t/s), fR(y) ∼ y−λR/z (28)

where the asymptotic forms should hold for y → ∞. Similarly, scaling can be observed for
the autoresponse function as shown in figure 6. On the other hand, the unconnected correlator
behaves for large times simply as 〈ni (t)ni (s)〉 ∼ (ts)−b/2.

The results for the ageing exponents a, b, λC , λR are collected in table 3. The agreement
between the results of the transfer matrix renormalization group (TMRG) and Monte Carlo
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Table 3. Non-equilibrium exponents for the contact process (CP), the non-equilibrium kinetic Ising
model (NEKIM), the bosonic contact process (BCP) and the bosonic pair-contact process (BPCP). Several
kinetic growth models based on the Edwards–Wilkinson (EW) and Mullins–Herring (MH) equations
are also listed; see section 4.

Model d a b λC /z λR/z Method Ref.

CP 1 −0.68(5) 0.32(5) 1.85(10) 1.85(10) TMRG [41]
−0.57(10) 0.319 1.9(1) 1.9(1) Monte Carlo [109]
−0.681 1.76(5) Monte Carlo [75]

2 0.3(1) 0.901(2) 2.8(3) 2.75(10) Monte Carlo [109]

NEKIM 1 −0.430(4) 0.570(4) 1.9(1) 1.9(1) Monte Carlo [96]

BCP �1 d/2 − 1 d/2 − 1 d/2 d/2 Exact [8]

BPCP >2 d/2 − 1 d/2 − 1 d/2 d/2 Exact, α < αC

>2 and <4 d/2 − 1 0 d/2 d/2 Exact, α = αC [8]
>4 d/2 − 1 d/2 − 2 d/2 d/2 Exact, α = αC

EW2 �1 d/2 − 1 d/2 − 1 − ρ d/2 − ρ d/2 Exact [110]

MH1 �1 d/4 − 1 d/4 − 1 d/4 d/4 Exact [110]

MH2 �1 d/4 − 1 d/4 − 1 − ρ/2 d/4 − ρ/2 d/4 Exact [110]

MHc �2 (d − 2)/4 (d − 2)/4 (d + 2)/4 (d + 2)/4 Exact [14]

(MC) simulations serves as a useful control on the viability of the results. While the equality
λC = λR is fully analogous to what was seen in non-equilibrium critical dynamics, the
exponents a and b are no longer equal but satisfy

1 + a = b = 2δ. (29)

Some comments are in order.

(i) If the critical contact process were a Markov process, these exponents might be calculated
from the global persistence exponent θg through the scaling relation [87, 73, 3]

λC

z
= θg − 2(1 − d) − η

2z
, (30)

which would predict λC/z = 1.98(2) in one dimension and λC/z = 3.5(5) in two
dimensions. Although this not too far from the values reported in table 3, the differences
appear to be significant. If that conclusion is correct, it would point towards the existence
of temporal long-range correlations and hence of an effective non-Markovian dynamics of
the critical contact process.

(ii) The relation 1 + a = b can be understood [13], as follows, to be a consequence of the
rapidity-reversal symmetry of Reggeon field theory (which is generally thought to be in the
same universality class as the contact process). The field-theoretical action in the Janssen–
de Dominicis formulation reads at the critical point

J [φ, φ̃] =
∫

dt dr [φ̃(∂t − D�)φ − u(φ̃ − φ)φ̃φ − hφ̃] (31)

where φ and h are the coarse-grained particle densities and creation rates for particles. For
h = 0 and if the ‘time’ t ∈ R is unbounded, the action is invariant under the rapidity
reversal; see [121, 122]:

φ̃(t, r) �→ −φ(−t, r), φ(t, r) �→ −φ̃(−t, r). (32)
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In particular, it follows that the scaling dimensions xφ = xφ̃ = β/ν must be equal. This
remains true even if rapidity-reversal is broken by initial conditions at time t = 0. For a
rapidity-reversal-invariant action J , the connected correlator becomes [13]

C(t, s; r − r′) = 〈φ(t, r)φ(s, r′)〉 − 〈φ(t, r)〉〈φ(s, r′)〉
= 〈φ̃(−t, r)φ̃(−s, r′)〉 − 〈φ̃(−t, r)〉〈φ̃(−s, r′)〉
= 0 (33)

where the second line comes from rapidity-reversal symmetry and the last line follows
from causality. Hence C(t, s; r) = 0 in the steady state but for relaxations from an initial
state C(t, s; 0) = 〈φ(t)φ(s)〉c and R(t, s; 0) = 〈φ(t)φ̃(s)〉 are non-vanishing and have
the same scaling dimensions, which implies (29) and also λC = λR .
While this explains the origin of equation (29) for the contact process, it is not yet
understood why it also holds true in the NEKIM [96] (see below) where rapidity-reversal
symmetry is not known to be satisfied. On the other hand, equation (29) is not universally
valid. In the critical bosonic contact process, one has a = b. The critical bosonic pair-
contact process furnishes further examples with a �= b but the relation between a and b is
distinct from equation (29).

(iii) The non-equality of the exponents a and b is only possible in systems with non-equilibrium
steady states. Indeed, for equilibrium systems, one has time-translation invariance, and
combining this with the scaling forms would give

C(t, s) ∼ (t − s)−b, R(t, s) ∼ (t − s)−1−a .

The fluctuation–dissipation theorem would then give a = b. Hence the equality a = b is
a necessary condition that a quasi-stationary state, which might be present for t − s � 1,
is an equilibrium one.

(iv) Is it possible to define a non-equilibrium temperature from the steady states of systems
without detailed balance? A recent attempt by Sastre et al [112] started from the
observation that, in simple magnets, the fluctuation–dissipation ratio X (t, s) → 1 as
t → ∞ and t − s → 0. From this observation, they define a dynamical temperature
by

1

Tdyn
:= lim

t→∞

(

lim
t−s→0

R(t, s)

∂C(t, s)/∂s

)

. (34)

By explicit calculation, they confirm that in the 2D critical voter model (where indeed a =
b) this limit exists, has a non-trivial value and is universal [112]. Still, their appealing idea
has met with several criticisms. First, Mayer and Sollich [89] construct in the coarsening
1D Glauber–Ising model a defect-pair observable such that the fluctuation–dissipation ratio
X (t, s) �= 1 in the short-time regime (in particular they show lims→∞ X (s, s) = 3/4).
Second, Tdyn can only be finite if a = b and the examples listed in table 3 show that
the fluctuation–dissipation ratio itself is in general no longer defined. It appears that the
proposal (34) relies too heavily on specific properties of the voter model.

(v) Rather than the fluctuation–dissipation ratio X (t, s) as defined in equation (3) for systems
with detailed balance, one may instead consider the ratio �(t, s), and its limit �∞, which
are defined by [41]

�(t, s) := R(t, s; 0)

C(t, s; 0)
= fR(t/s)

fC(t/s)
; �∞ := lim

s→∞

(

lim
t→∞ �(t, s)

)

(35)

which are well defined because of (29). The limit �∞, being the ratio of two quantities
with the same classical and scaling dimensions, is expected to be universal [13]. Baumann
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and Gambassi [13] argue that a value �(t, s)−1 �= 0 is a measure for the breaking of
the rapidity-reversal symmetry (in the same way as X �= 1 measures the distance from
an equilibrium state) and show explicitly that only the zero-momentum modes contribute
to a non-vanishing value of �(t, s)−1. In this respect, for systems with rapidity-reversal
symmetry, � appears to be the analogue of the fluctuation–dissipation ratio R. Of course,
the applicability of their argument depends on the validity of the scaling relation 1+a = b.
For the value of �∞, they find in 4 − ε dimensions

�∞ = 2

[

1 − ε

(
119

480
− π2

120

)]

+ O(ε2) (36)

which in one dimension is in semiquantitative agreement with the estimate �∞ =
1.15(5) [41].

Before one can discuss the form of the scaling function fR(y), it is necessary to study the
rôle of the initial conditions. Indeed, all existing simulations on the ageing in that model start
from a lattice with a non-vanishing particle density and hence are in contrast to simulations in
magnetic systems, where the initial order parameter was set to zero. For the time-dependent
order parameter one expects the scaling form [126, 81, 82, 13]

〈φ(t)〉 = φ0tθ f
(

φ0tθ+β/(νz)
)

(37)

where φ0 = 〈φ(0)〉 is the initial value of the order parameter (which for the contact process
is the particle density) and θ is the slip exponent. Hence there is characteristic time-scale
τ∗ ∼ φ

−1/(θ+β/(νz))
0 where a change of scaling behaviour takes place. For any non-vanishing

value of the dimensionful variable φ0 the long-time scaling behaviour is effectively described
by the τ∗ → 0 limit. For a vanishing initial order parameter the exponents λC,R are independent
of the equilibrium exponents [81]. For φ0 �= 0, Baumann and Gambassi show from an analysis
of the scaling behaviour of both responses and correlators that [13]

λC = λR = d + z + β

ν
. (38)

The available exponent estimates in one dimension and two dimensions from simulational
studies [41, 109, 75, 71] agree quite well with this prediction. We point out that the available
results for the limit ratio X∞ [41, 13], see equation (36), are found for a finite initial particle
density.

On the other hand, in the theory of LSI as reviewed in section 1 the implicit assumption
φ0 = 0 was made. Since φ0 couples to a relevant scaling variable, it is not obvious why a theory
formulated in the limit φ0tθ+β/(νz) → 0 should be valid in the opposite limit φ0tθ+β/(νz) → ∞
where all existing studies on the ageing in the contact process have been performed. It is
therefore remarkable that LSI with φ0 = 0 still captures well the behaviour of the φ0 �= 0
data. This is shown in figure 6, where for almost all values of t/s an almost perfect agreement
with the LSI prediction (26), derived for φ0 = 0, is found9. Hinrichsen [75] has argued that a
more ambitious test may be performed by plotting r(y) := fR(y)[yλR/z−1−a′

(y − 1)1+a′ ] over
against t/s − 1. If LSI with φ0 = 0 holds, one expects that r(y) = const. In this way, he
found that for although the measured function fR(y) agrees nicely with equation (26) if t/s is
large enough, for values t/s � 1.1, the function fR(y) remains well defined but changes to a
different behaviour which is no longer described by equation (26). The high quality of his data
makes it clear that this change of behaviour in the scaling function cannot be explained away
by invoking corrections to scaling. Further unpublished calculations [42] for extremely large
values of s confirm these conclusions. In addition, the same conclusion has been reached from

9 In the limit φ0 → 0, the results for R(t, s) appear to be consistent with LSI [13].
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a detailed field-theoretical study of the two-time response in momentum space [13]. A possible
explanation of the form of fR(y) in terms of LSI will require the extension of the theory to
include a non-vanishing value of φ0.

2.2. Non-equilibrium kinetic Ising model

We now review results, obtained by Ódor [96], on the ageing behaviour in a non-equilibrium
kinetic Ising model (NEKIM) where the parity of the total particle number is conserved. The
model was introduced by Menyhárd [92] and combines spin-flips as in zero-temperature
Glauber dynamics with spin-exchanges as in Kawasaki dynamics. The model is formulated
either in terms of Ising spins (↑, ↓) or else in terms of a particle reaction model of the kinks
with occupied or empty sites (•, ◦). First, the Glauber-like part of the dynamics contains a
diffusive motion

↑↓↓ � ↑↑↓ or equivalently • ◦ � ◦•; with rate D

and the pair annihilation of nearest neighbours

↑↓↑ →↑↑↑ or equivalently • • → ◦◦; with rate 2α.

The Kawasaki-like part of the dynamics is described by

↑↑↓↓ � ↑↓↑↓ or equivalently ◦ •◦ � • • •; with rate k.

In full, this is a model describing branching and annihilating random walks with an even
number of offspring. By increasing k, one finds a second-order phase transition [92] where
the kinks go from an absorbing to an active state. This phase transition is in the so-called
parity-conserving (PC) universality class [54, 29, 26] which is different from the one of the
contact process.

Using the parameterization k = 1 − 2�, D = �(1 − δ̄)/2 and 2α = �(1 + δ̄), the critical
point is located at � = 0.35, k = 0.3 and δ̄ = −0.3928 [96]. Measuring the kink density
through an efficient cluster algorithm, and starting from a fully ordered kink state with spins
being alternately ↑ and ↓, he finds a nice power-law scaling 〈ni (t)〉 ∼ t−0.285(2).

Next, measuring the unconnected kink–kink two-time correlation function, Ódor’s data are
fully compatible with the scaling behaviour 〈ni (t)ni (t ′)〉 ∼ t ′−0.57(t/t ′)−0.285 for t/t ′ → ∞
and allows one to determine the ageing exponent b; see table 3. This result is also consistent
with earlier results on the spin–spin autocorrelator in the same model; see [96] for details. The
connected autocorrelator was also calculated, with the result λC/z = λR/z = 1.9(1). This is
in agreement with the scaling relation (38).

Finally, the spin-autoresponse R(t, s) with respect to a magnetic field coupling to a spin
was calculated [96], by adapting methods used previously by Hinrichsen [75] for the contact
process. We recall that for the fully ordered kink initial state, the initial spin magnetization
vanishes. In figure 7 it is shown that a clear data collapse is found when 1 + a = b, as in the
contact process.

Comparing the form of the scaling function fR(y) with the prediction of LSI, Ódor finds
a perfect agreement as long as his data remain in the scaling limit. In particular, he carefully
considered the limit y → 1 (see inset in figure 7). Within the numerical accuracy, the data for
the rescaled response scaling function r(y) remain essentially constant for all values of t/s, as
long as the model is in the scaling regime. Clear deviations from a horizontal line only occur
once finite-time corrections have broken dynamical scaling and by increasing s, the regime
where (i) scaling holds and (ii) r(y) is constant progressively extends to ever smaller values
of y = t/s. This finding is different from the 1D contact process [75, 13] (see above). It
is conceivable that the agreement with LSI in the NEKIM comes from the fact that the initial
configuration used has a vanishing magnetization.
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Figure 7. Scaling of the autoresponse function for the critical 1D NEKIM [96], for several waiting
times s. The inset shows a rescaled response function, with s = [256, 512, 1024] from right to left.

2.3. Bosonic contact and pair-contact processes

Two exactly solvable models allow us to confirm the conclusions drawn from the above
numerical studies.

The bosonic contact process was introduced in order to describe clustering phenomena in
biological systems [77] whereas the bosonic pair-contact process was originally conceived [99]
as a solvable variant of the usual (fermionic) pair-contact process. These models are defined
as follows. Consider a set of particles of a single species A which move on the sites of a d-
dimensional hypercubic lattice. On any site one may have an arbitrary (non-negative) number
of particles and it is this property which makes up the difference with the usual contact and pair-
contact processes considered before where on each site at most one particle is allowed. Single
particles may hop to a nearest-neighbour site with unit rate and, in addition, the following
single-site creation and annihilation processes are admitted:

m A
μ−→ (m + 1)A, p A

λ−→ (p − �)A; with rates μ and λ (39)

where � is a positive integer such that |�| � p. We are interested in the following special cases.

(i) The critical bosonic contact process:p = m = 1. Here only � = 1 is possible.
Furthermore the creation and annihilation rates are set equal: μ = λ.

(ii) The critical bosonic pair-contact process:p = m = 2. We fix � = 2, set 2λ = μ and
define the control parameter10

α := 3μ

2D
. (40)

The dynamics of these models is conveniently described in terms of creation operators
a†(t, r) of a particle at time t and location r and the corresponding annihilation operator

10 If instead we would treat a coagulation process 2A → A, where � = 1, the results presented in the text are recovered
by setting λ = μ and α = μ/D.
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a(t, r); see [36, 117]. The equation of motion for the space–time-dependent particle density
ρ(t,x) := 〈a†(t,x)a(t,x)〉 = 〈a(t,x)〉 reads, after a rescaling t �→ t/(2D) [77, 99],

∂

∂ t
〈a(t,x)〉 = 1

2
�x〈a(t,x)〉 − λ�

2D
〈a(t,x)p〉 + μ

2D
〈a(t,x)m〉 + h(t,x) (41)

where we have used the shorthand

�x f (t,x) :=
d∑

r=1

( f (t,x − er ) + f (t,x + er ) − 2 f (t,x)). (42)

Similarly, the equal-time correlation functions satisfy the equations of motion

∂

∂ t
〈a(x)a(y)〉 = 1

2

d∑

k=1

[〈a(x)a(y − k)〉 + 〈a(x)a(y + k)〉

+ 〈a(x − k)a(y)〉 + 〈a(x + k)a(y)〉 − 4 〈a(x)a(y)〉] (43)

∂

∂ t

〈

(a(x))2
〉 =

d∑

k=1

[〈a(x)a(x − k)〉 + 〈a(x)a(x + k)〉 − 2〈a(x)2〉] + μ(1 + �)

2D

〈

a(x)m
〉

(44)

where in equation (43) x �= y is understood. Since 〈n(x)2〉 = 〈a(x)2〉 + 〈a(x)〉, the main
equal-time quantity of interest, namely the variance σ 2 := 〈n(x)2〉 − 〈n(x)〉2, can be found.

The equations of motion (43), (44) are already written for the critical line given by [99]

�λ = μ. (45)

where they naturally close. For the bosonic contact process p = m = 1 there is an extension
to arbitrary values of λ,μ which still closes. In both models, the spatial average of the local
particle density ρ(x, t) := 〈a(x, t)〉. remains constant in time

∫

dxρ(x, t) =
∫

dx 〈a(x, t)〉 = ρ0 (46)

where ρ0 is the initial mean particle density. Furthermore, the critical line (45) separates an
active phase with a formally infinite particle density in the steady state from an absorbing phase
where the steady-state particle density vanishes. The phase diagrams are sketched in figure 8.

The physical nature of this transition becomes apparent when equal-time correlations are
studied [77, 99]. For example, for the bosonic contact process at criticality one has [77]

〈

a(t,x)2
〉 =

⎧

⎪⎨

⎪⎩

c1 t−d/2+1; if d < 2

c2 ln t; if d = 2
c3 + c4 t−d/2+1; if d > 2

(47)

where t � 1 and c0, . . . , c4 are known positive constants. For d � 2, the fluctuations in the
mean particle density increases with time, although the mean particle density itself remains
constant. Physically, this means that the particle number on relatively few sites will increase
while many other sites will become empty. Only for d > 2 will fluctuations eventually die out.
For the bosonic contact process, this critical behaviour is the same along the entire critical line.

For the bosonic pair-contact process, that is different. Rather, there exists a critical value
αC of the control parameter, given by

1

αC
= 2

∫ ∞

0
du (e−4u I0(4u))d (48)
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Figure 8. Schematic phase diagrams for D �= 0 of (a) the bosonic contact process and the bosonic
pair-contact process in d � 2 dimensions and (b) the bosonic pair-contact process in d > 2
dimensions. The absorbing region 1, where limt→∞ ρ(x, t) = 0, is separated by the critical line
equation (45) from the active region 2, where ρ(x, t) → ∞ as t → ∞. Clustering along the critical
line is indicated in (a) and (b) by full lines, but in the bosonic pair-contact process with d > 2 the
steady state may also be homogeneous (broken line in (b)). These two regimes are separated by a
multicritical point.

and where I0(u) is a modified Bessel function. Specific values are αC(3) ≈ 3.99 and
αC(4) ≈ 6.45 and limd ↘ 2 αC(d) = 0. Then the variance behaves as [99]

〈

a(t,x)2
〉 =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

f0; if α < αC

f1 td/2−1; if α = αC and 2 < d < 4

f2 t; if α = αC and d > 4
f3 et/τ ; if α > αC (or d < 2)

(49)

where the f0, . . . , f3 and τ are known positive constants. This means that at the multicritical
point at α = αC there occurs a clustering transition such that for α < αC the systems evolves
towards a more or less homogeneous state while for α � αC particles accumulate on very few
lattice sites while the other ones remain empty. In contrast with the bosonic contact process,
clustering occurs in some region of the parameter space for all values of d .

We are interested in studying the impact of this clustering transition on the two-time
correlations and linear responses. In order to obtain the equations of motion of the two-time
correlator, the time-ordering of the operators a(t,x) must be taken in account. This leads
to the following equations of motion for the two-time correlator, after rescaling the times
t �→ t/(2D), s �→ s/(2D), and for t > s [49, 8]:

∂

∂ t
〈a(t,x)a(s,y)〉

= 1

2
�x〈a(t,x)a(s,y)〉 − λ�

2D
〈a(t,x)pa(s,y)〉 + μ

2D
〈a(t,x)ma(s,y)〉. (50)

We are interested in the two-time connected correlation function11

C(t, s; r) := 〈a(t,x)a(s,x + r)〉 − ρ2
0 (51)

and take an uncorrelated initial state; hence C(0, 0; r) = 0. The linear two-time response
function is found by adding a particle-creation term

∑

x h(x, t)(a†(x, t) − 1) to the quantum

11 It can be shown that in the scaling regime C(t, s; r) � 〈n(t, r0)n(s,r+r0)〉 describes the two-time density–density
correlation function [12].
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Table 4. Scaling functions (up to normalization) of the autoresponse and autocorrelation of the
critical bosonic contact and bosonic pair-contact processes [8]. The scaling functions for some
simple growth models [110, 14], as defined in section 4, are also listed.

f R(y) fC (y)

Contact process BCP (y − 1)−
d
2 (y − 1)−

d
2 +1 − (y + 1)−

d
2 +1

Pair α < αC d > 2 (y − 1)− d
2 (y − 1)− d

2 +1 − (y + 1)− d
2 +1

contact 2 < d < 4 (y − 1)− d
2 (y + 1)− d

2 2 F1

(
d
2 , d

2 ; d
2 + 1; 2

y+1

)

process α = αC d > 4 (y − 1)− d
2 (y + 1)− d

2 +2 − (y − 1)− d
2 +2 + (d − 4)(y − 1)− d

2 +1

Edwards–Wilkinson EW2 (y − 1)−
d
2 (y − 1)−

d
2 +1+ρ − (y + 1)−

d
2 +1+ρ

Mullins–Herring MH1 (y − 1)−
d
4 (y − 1)−

d
4 +1 − (y + 1)−

d
4 +1

Mullins–Herring MH2 (y − 1)− d
4 (y − 1)− d

4 +1+ρ/2 − (y + 1)− d
4 +1+ρ/2

Mullins–Herring MHc (y − 1)−(d+2)/4 (y − 1)−(d−2)/4 − (y + 1)−(d−2)/4

Hamiltonian H and taking the functional derivative

R(t, s; r) := δ〈a(t, r + x)〉
δh(s,x)

∣
∣
∣
∣
h=0

(52)

for which the usual scaling behaviour (28) is anticipated.
The solution of the equations (50) for the two-time quantities is now straightforward, if

just a little tedious. It can be shown [8] that the anticipated scaling behaviour (28) exists along
the critical line, but for the BPCP the further condition α � αC is required. For these cases, the
exponents are listed in table 3. In particular, we see that at the multicritical point α = αC , the
exponents a and b are different and, furthermore, do not satisfy the relation 1+a = b found for
the critical contact process and the NEKIM. This means that there is no straightforward way to
define an analogue of a limit fluctuation–dissipation ratio for particle-reaction models without
detailed balance. Furthermore, the explicit form of the scaling functions can also be found, and
they are listed in table 4. While the form of the autoresponse function fR(y) = (y − 1)−d/2 is
remarkably simple, the results for the autocorrelation function can be rendered as an integral,

fC (y) = C0

∫ 1

0
dθ θa−b(y + 1 − 2θ)−d/2, (53)

where the exponents a, b are taken from table 3.
In section 3, we shall show how these results for fR(y) and fC(y) in the BCP and the BPCP

can be understood using local scale-invariance. In section 4, we shall define the EW and MH

models and, after having briefly reviewed LSI for z = 4, then perform a similar analysis.

3. The bosonic processes and local scale-invariance

We now show that the exact results for response and correlation functions of the BCP and the
BPCP as listed in table 4 can be understood from local scale-invariance [9, 11].

3.1. Bosonic contact process

The master equation which describes the critical bosonic contact process can be turned into
a field theory in a standard fashion through an operator formalism which uses a particle
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Table 5. Scaling dimensions and masses of some composite fields.

Field Scaling dimension Mass

φ x M
φ̃ x̃ −M
φ̃2 x̃2 −2M
ϒ := φ̃2φ xϒ −M
� := φ̃3φ x� −2M
� := φ̃3φ2 x� −M

annihilation operator a(t, r) and its conjugate a†(t, r) [36, 121]. For calculating connected
correlators, it is useful to define the shifted fields

φ(t, r) := a(t, r) − ρ0

φ̃(t, r) := ā(t, r) = a†(t, r) − 1
(54)

such that 〈φ(t, r)〉 = 0 (our notation implies a mapping between operators and quantum
fields, using the known equivalence between the operator formalism and the path-integral
formulation [39, 78, 121]). As we shall see, these fields φ and φ̃ will become the natural quasi-
primary fields from the point of view of local scale-invariance. We remark that the response
function is not affected by this shift, since

R(t, s; r, r′) = δ〈a(t, r)〉
δh(s, r′)

∣
∣
∣
∣
h=0

= δ〈φ(t, r)〉
δh(s, r′)

∣
∣
∣
∣
h=0

. (55)

As for magnets, the field-theoretical action [78] is again decomposed J [φ, φ̃] = J0[φ, φ̃] +
Jb[φ, φ̃] into a ‘deterministic’ part

J0[φ, φ̃] :=
∫

dR

∫

du [φ̃(2M∂u − ∇2)φ] (56)

which is manifestly Galilei invariant, whereas the ‘noise’ is described by

Jb[φ, φ̃] := −μ

∫

dR

∫

du [φ̃2(φ + ρ0)]. (57)

We use uncorrelated initial conditions C(0, 0; r) = 0 throughout.
In what follows, some composite fields will be needed, which we list, together with their

scaling dimensions and their masses, in table 5. We remark that for free fields one has

x̃2 = 2x̃, xϒ = 2x̃ + x, x� = 3x̃ + x, x� = 3x̃ + 2x (58)

but these relations need no longer hold for interacting fields. On the other hand, from the
Bargman superselection rules we expect that the masses of the composite fields as given in
table 5 should remain valid for interacting fields as well.

As in section 1, we now have a similar reduction to averages of the noiseless theory. First,
for the computation of the response function, we add the term

∫

dR
∫

du φ̃(u,R)h(u,R) to
the action. As usual the response function is [9]

R(t, s; r, r′) = 〈φ(t, r)φ̃(s, r′)〉
=

〈

φ(t, r)φ̃(s, r′) exp

(

−μ

∫

dR

∫

du φ̃2(u,R)(φ(u,R) + ρ0)

)〉

0

= 〈φ(t, r)φ̃(s, r′)〉0 = R0(t, s; r, r′) (59)

where we expanded the exponential and applied the Bargman superselection rule. Indeed, the
two-time response is just given by the response of the (Gaussian) noiseless theory. We have
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therefore reproduced the exact result of table 4 for the response function of the critical bosonic
contact process.

Second, we have for the correlator

C(t, s; r, r′) =
〈

φ(t, r)φ(s, r′) exp

(

−μ

∫

dR

∫

du φ̃2(u,R)φ(u,R)

)

× exp

(

−μρ0

∫

dR

∫

du φ̃2(R, u)

)〉

0

. (60)

Expanding both exponentials separately and using the Bargman superselection rule (20), it
follows that C = C1 + C2 can be written as the sums of two terms which read

C1(t, s; r, r′) = −μρ0

∫

dR

∫

du 〈φ(t, r)φ(s, r′)φ̃2(u,R)〉0 (61)

and

C2(t, s; r, r′) = μ2

2

∫

dR dR′
∫

du du′ 〈φ(t, r)φ(s, r′)ϒ(u,R)ϒ(u′,R′)〉0 (62)

using the field ϒ; see table 5. Hence the connected correlator is determined by three- and
four-point functions of the noiseless theory.

The noiseless three-point response needed for C1 can be found from its covariance under
the ageing algebra [9]

〈φ(t, r)φ(s, r′)φ̃2(u,R)〉0 = (t − s)x− 1
2 x̃2 (t − u)−

1
2 x̃2 (s − u)−

1
2 x̃2

× exp

(

−M
2

(r − R)2

t − u
− M

2

(r′ − R)2

s − u

)

�3(u1, v1)�(t − u)�(s − u) (63)

with

u1 = u

t
· [(s − u)(r − R) − (t − u)(r′ − R)]2

(t − u)(s − u)2

v1 = u

s
· [(s − u)(r − R) − (t − u)(r′ − R)]2

(t − u)2(s − u)

(64)

and an undetermined scaling function �3. The �-functions express causality. Specifically, for
the autocorrelator, i.e. r = r′, this yields, with y = t/s

C1(t, s) = −μρ0 s−x− 1
2 x̃2+ d

2 +1 · (y − 1)−(x− 1
2 x̃2)

×
∫ 1

0
dθ (y − θ)−

1
2 x̃2 (1 − θ)−

1
2 x̃2

∫

Rd

dR exp

(

−M
2

R2 y + 1 − 2θ

(y − θ)(1 − θ)

)

× H

(
θ

y

R2(y − 1)2

(y − θ)(1 − θ)2
, θ

R2(y − 1)2

(y − θ)2(1 − θ)

)

(65)

where H is an undetermined scaling function. A similar, but quite lengthy, expression can be
derived for C2 and depends on x̃2 and xϒ [9]. Since the critical BCP is described by a free field
theory, one can expect from table 3 that x = x̃ = d/2 and hence for the composite fields

x̃2 = d, xϒ = 3
2 d. (66)

Consequently, the autocorrelator takes the general form

C(t, s) = s1−d/2g1(t/s) + s2−d g2(t/s). (67)

For d larger than the lower critical dimension d∗ = 2, the second term merely furnishes a
finite-time correction. On the other hand, for d < d∗ = 2, it would be the dominant one and
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we can only achieve agreement by discarding the scaling function g2. It remains to be seen that
g1 is compatible with the exact result given in table 4.

This can be achieved by choosing in equation (63) [104]

�3(u1, v1) = �

(
1

u1
− 1

v1

)

(68)

where � remains an arbitrary function. Then

C1(t, s) = −μρ0s
d
2 +1−x− 1

2 x̃2 (t/s − 1)
1
2 x̃2−x− d

2

×
∫ 1

0
dθ [(t/s − θ)(1 − θ)] d

2 − 1
2 x̃2 φ1

(
t/s + 1 − 2θ

t/s − 1

)

(69)

where the function φ1 is defined by

φ1(w) =
∫

dR exp

(

−Mw

2
R2

)

�(R2). (70)

Now the result for the BCP in table 4 is recovered if one chooses [104, 9] φ1(w) =
φ0,cw

−1−a . This form for φ1(w) guarantees that the three-point response function
〈φ(r, t)φ(r, s)φ2(r′, u)〉0 is non-singular for t = s.12

3.2. Bosonic pair-contact process

The construction of the action follows standard lines [78]. Making the same shift equation (54)
as before, the action becomes J [φ, φ̃] = J0[φ, φ̃] + Jb[φ, φ̃] where the ‘deterministic’ part
now reads

J0[φ, φ̃] :=
∫

dr

∫

dt
[

φ̃(2M∂t − ∇2)φ − αφ̃2φ2
]

. (71)

The remaining part is the noise term, which reads

Jb[φ, φ̃] =
∫

dR

∫

du
[−αρ2

0 φ̃
2 − 2αρ0φ̃

2φ − μφ̃3φ2 − 2μρ0φ̃
3φ − ρ2

0 φ̃
3
]

. (72)

The discussion of the Schrödinger or, more precisely, the ageing invariance of J0 can no longer
use the representations we considered so far, since the equation of motion associated to J0 is
nonlinear, namely

2M∂tφ(x, t) = ∇2φ(x, t) − gφ2(x, t)φ̃(x, t). (73)

While for a constant g the well-known symmetries of this equation are those encountered
before, it was pointed out recently that g rather should be considered as a dimensionful quantity
and hence should transform under local scale transformations as well [119]. This requires an
extension of the generators of aged which do contain a dimensionful coupling g [9]. Then it
can be shown that the Bargman superselection rules (20) still apply and the response function
of the noiseless theory now reads [9]

R0(t, s; r, r′) = (t − s)−
1
2 (x1+x2)

(
t

s

)− 1
2 (x1−x2)

× exp

(

−M
2

(r − r′)2

t − s

)

�̃2

(
t

s
· t − s

g1/y
,

g

(t − s)y

)

(74)

with an undetermined scaling function �̃2. In these calculations, we have assumed for technical
simplicity that each field ϕi has a coupling gi , and only at the end do we let g1 = · · · = gn = g.

12 We remark that for 2 < d < 4, the same form of the autocorrelation function is also found in the critical voter
model [37].
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This form is clearly consistent with the results for the BPCP listed in table 4, for both α < αc

and α = αc, if we identify

x := x1 = x2 = a + 1 = d

2
, �̃2 = const. (75)

In distinction with the bosonic contact process, the symmetries of the noiseless part S0 do not
fix the response function completely but leave a certain degree of flexibility in the form of the
scaling function �̃2.

As before, averages can be reduced to averages within the ‘deterministic’ theory only.
Technically, calculations become a little longer for the BPCP, since because of the structure of
Jb several composite fields must be defined. We refer to [9] for the details and merely quote
here the results. First, the response function does not depend explicitly on the noise, namely

R(t, s; r, r′) = R0(t, s; r, r′). (76)

Second, the results of table 4 for fC (y) can be reproduced from the single term

C1(t, s) = αρ2
0

∫

dR

∫

du
〈

φ(t, r)φ(s, r)φ̃2(u,R)
〉

0 . (77)

The required three-point function now reads

〈φ(t, r)φ(s, r′)φ̃2(u,R)〉0 = (t − s)x− 1
2 x̃2 (t − u)−

1
2 x̃2 (s − u)−

1
2 x̃2

× exp

(

−M
2

(r − R)2

t − u
− M

2

(r′ − R)2

s − u

)

�̃3(u1, v1, β1, β2, β3) (78)

with

u1 = u

t
· [(s − u)(r − R) − (t − u)(r′ − R)]2

(t − u)(s − u)2
(79)

v1 = u

s
· [(s − u)(r − R) − (t − u)(r′ − R)]2

(t − u)2(s − u)
(80)

β1 = 1

s2
· α1/y

(t − u)2
, β2 = 1

s2
· α1/y

(s − u)2
, β3 = α1/ys2 (81)

s2 = 1

t − u
+ 1

u
. (82)

Next, we choose the following realization for �̃3:

�̃3(u1, v1, β1, β2, β3) = �

(
1

u1
− 1

v1

)[

− (
√

β1 − √
β2)

√
β3

β3 − √
β2β3

](a−b)

(83)

where the scaling function � was already encountered in equation (68) for the bosonic contact
process. We now have to distinguish the two different cases α < αC and α = αC . For the first
case α < αC , we have a − b = 0, so the last factor in (83) disappears and we simply return
to the expressions already found for the bosonic contact process, in agreement with the known
exact results. However, at the multicritical point α = αC we have a − b �= 0, and the last factor
becomes important. We point out that only the presence or absence of this factor distinguishes
the cases α < αC and α = αC .

Inserting the values of the β1,2,3 we finally obtain for the autocorrelation function

C1(t, s) = s−b(y − 1)(b−a)−a−1
∫ 1

0
dθ [(t/s − θ)(1 − θ)]a−b

× φ1

(
t/s + 1 − 2θ

t/s − 1

)[
θ(t/s − 1)

(t/s − θ)(1 − θ)

]a−b

(84)
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where we have identified

x̃2 = 2(b − a) + d. (85)

C1(t, s) reduces to the expression (53) if we choose the same φ1(w) = φ0,cw
−1−a as before.

Hence all scaling functions for the BPCP are reproduced correctly.

4. Growth models

As a further illustration on a different class of system we now describe recent work by Röthlein,
Baumann and Pleimling [110] on kinetic growth models. As a simple model for ballistic
deposition consider the Family model [44]. A particle is randomly dropped onto the sites
of a lattice. However, before it is fixed, the particle explores the sites around the one it arrived
at (typically the nearest neighbours) and fixes itself at the lattice site with the lowest height.
One obtains in this way a growing surface which may be described in terms of a height variable
h(t, r). Clearly, since there is only irreversible deposition, the system will never arrive at an
equilibrium state.

Some of the simplest continuum descriptions of these phenomena can be cast into
stochastic linear equations for the height variable. For the sake of simplicity, we shall always
work in the frame co-moving with the mean surface height. For example, if the deposition
is purely diffusive and without mass conservation, the simplest model is the well-known
Edwards–Wilkinson (EW) model [40]

∂t h(t, r) = D∇2h(t, r) + η(t, r) (86)

but on the other hand, if mass conservation must be taken into account, one might rather
consider the Mullins–Herring (MH) model; see [127]:

∂t h(t, r) = −D(∇2)2h(t, r) + η(t, r). (87)

Following [110], the following types of Gaussian noise with vanishing first moment 〈η(t, r)〉 =
0 will be considered:

(a) Non-conserved, short-ranged 〈η(t, r)η(s, r′)〉 = 2Dδ(r − r′)δ(t − s).
(b) Non-conserved, long-range 〈η(t, r)η(s, r′)〉 = 2D|r − r′|2ρ−dδ(t − s) and 0 < ρ < d/2.
(c) Conserved, short-ranged 〈η(t, r)η(s, r′)〉 = −2D∇2

rδ(r − r′)δ(t − s).

Then the following models were studied in [110]:

(i) EW1: equation (86) with the non-conserved noise (a).
(ii) EW2: equation (86) with the non-conserved, long-ranged noise (b).

(iii) MH1: equation (87) with the non-conserved noise (a).
(iv) MH2: equation (87) with the non-conserved, long-ranged noise (b).
(v) MHc: equation (87) with the conserved noise (c) [14].

In the models EW1 and MHc the noise is in agreement with detailed balance while for the other
models it is not. Solving the linear equations (86) and (87) is straightforward. The two-time
correlation and response functions are seen to obey the same kind of scaling behaviour as for
the non-equilibrium models considered before. In table 3 the values of the exponents are listed
and the scaling functions for the autoresponse and the autocorrelation are included in table 4
(the models BCP and EW1 lead to identical results and are not listed separately). The result
quoted for the MHc model is only valid for d > 2 as stated; for d = 2 the scaling function
becomes fC(y) = 2D ln[(y − 1)/(y + 1)] [14]. Detailed simulations show that the correlation
and response functions of the Family model [44] and of a variant of it are perfectly described
by the EW1 model and hence should be in the same universality class [110].
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We shall see shortly that all results about the scaling functions as listed in table 4 can be
understood from an extension of dynamical scaling to local scale-invariance, for both the EW

models, where the dynamical exponent z = 2, as well as for the MH models, where z = 4. In
this context, it is instructive to consider the space–time responses R(t, s; r) as well. In general,
one finds the structure

R(t, s; r) = R(t, s)�(|r|(t − s)−1/z) (88)

where R(t, s) = R(t, s; 0) is the autoresponse function. If z = 2, one has a simple exponential
form �(u) = exp(−Mu) [56]13 while for z = 4, the form of �(u) is more complicated. For
example, in the MHc model with conserved noise [14]

�(u) = �0

[

0 F2

(
1

2
,

d

4
; u4

256

)

− 8

d

�
(

d
4 + 1

)

�
(
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4 + 1

2

)

√

u4

256
0 F2

(
3

2
,

d

4
+ 1

2
; u4

256

)]

(89)

where �0 is a known constant and 0 F2 is a hypergeometric function. Very similar expressions
have been derived in the other MH models; see [110] for details.

Understanding the form of the spatio-temporal response allows for an explicit test of one
of the important ingredients of the theory of local scale-invariance, namely Galilei invariance
for z = 2 and its generalization if z �= 2. Since in the EW models one has z = 2, the calculation
of R(t, s; r) is a direct extension of the discussion presented in section 1. Since this has been
discussed in detail in the literature [56, 58] we shall not repeat it here and rather concentrate on
the case z = 4, following [58, 110, 14].

Consider the dynamical symmetries of the ‘Schrödinger operator’

S4 := −λ∂t + 1
16 (∇2

r)
2. (90)

which will become related to the deterministic part of the Mullins–Herring equation. As before,
we ask if dynamical scaling can be extended to a larger set of local scale transformations, given
standard dynamical scaling and spatial translation invariance. Specializing the construction
of [58] to z = 4, these generators read as follows, with the shorthands r · ∂r := ∑d

k=1 rk ∂rk ,
∇2

r := ∑d
k=1 ∂2

rk
and r2 := ∑d

k=1 r 2
k :

X−1 := −∂t

X0 := −t∂t − 1

4
r · ∂r − x

4

X1 := −t2∂t − x

2
t − λr2 (∇2

r )
−1 − 1

2
tr · ∂r + 4γ (r · ∂r) (∇2

r)
−2 + 2γ (d − 4)(∇2

r )
−2

R(i, j) := ri∂r j − r j∂ri ; where 1 � i < j � d

Y (i)
−1/4 = −∂ri

Y (i)
3/4 = −t∂ri − 4λri (∇2

r )
−1 + 8γ ∂ri (∇2

r )
−2

(91)

where x is the scaling dimension of the fields on which these generators act and γ, λ are further
field-dependent parameters. Here, the generators X±1,0 correspond to projective changes in the
time t �→ (αt + β)/(γ t + δ) with αδ − βγ = 1, the generators Y (i)

n−1/4 are space translations,
generalized Galilei transformations and so on, and R(i, j) are spatial rotations. Here we use the
following properties: ∂α

r ∂
β
r = ∂

α+β
r and [∂α

r , r ] = α∂α−1
r , which can be proven for fractional

derivatives with extra distributional terms [58, appendix A] which in turn are closely related
to fractional derivatives as defined in [48]. Furthermore, (∇2

r )
−2 = (∇2

r)
−1 · (∇2

r )
−1 and the

operator (∇2
r )

−1 is defined, e.g., for d = 2, by formal expansion [110, 14]:

(∇2
r )

−1 := (∂2
r1

+ ∂2
r2
)−1 :=

∞∑

n=0

(−1)n∂−2−2n
r1

∂2n
r2

. (92)

13 For detailed quantitative tests in Ising and Potts models, see [61, 86].
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This implies that the commutator [(∇2
r )

n, ri ] = n ∂ri (∇2
r)

n−1 for all n ∈ Z.
That the generators in equation (91) indeed describe dynamical symmetries of the

‘Schrödinger operator’ (90) now follows from the commutators [58, 14]

[S4, Y (i)
−1/4] = [S4, Y (i)

3/4] = [S4, R(i, j)] = 0, [S4, X0] = −S4. (93)

This means that for a solution of the ‘Schrödinger equation’ S4φ = 0 the transformed function
Xφ is again solution of the ‘Schrödinger equation’. Finally

[S4, X1] = −2tS4 + λ

2

(

x − d

2
− 1 + 2γ

λ

)

; (94)

hence a dynamical symmetry is obtained if the field φ has the scaling dimension

x = d

2
+ 1 − 2γ

λ
. (95)

Generalizing from conformal or Schrödinger invariance, quasi-primary fields transform
covariantly under the generators (91) and in particular the response function will satisfy the
conditions X1 R = X0 R = Y (i)

−1/4 R = R(i, j) R = 0 (the other conditions then follow from
the Jacobi identities) and is now characterized by its scaling dimension xi and the further
parameters γi , λi . In calculating the response function R = 〈φφ̃〉 this leads to the conditions
λ = −̃λ and γ = −γ̃ , whereas the scaling function �(u) from equation (88) can be found by
solving the differential equation
(

∂u

(
1

ud−1
∂u

(

ud−1∂u
)
)2

+ 4λu

(
1

ud−1
∂u

(

ud−1∂u
)
)

− 16γ ∂u

)

�(u) = 0 (96)

where

�(u) =
(

1

ud−1
∂u(u

d−1∂u)

)2

�(u). (97)

Solving this via series expansion techniques [58, 110, 14] and checking carefully that all
independent solutions are taken into account, one can indeed recover the explicit result (89)
for the MHc model as a special case [14] and, similarly, also for the MH1 and MH2 models [110].

Lastly, since the MH equation is linear, there is a natural Wick theorem which allows us to
move from the stochastic Langevin equation to the deterministic equation in quite an analogous
way as previously for z = 2 [110, 14]. The extension of the technique to nonlinear cases and/or
to z �= 2, 4 is work in progress and will be reported elsewhere [15]. In a similar way one may
also check that the correlation functions agree with LSI.

The MH models considered in this section are, together with the critical spherical model
with a conserved order parameter [14], the first analytically solved examples with z �= 2 where
local scale-invariance could be fully confirmed. These examples make it in particular clear that
the height of the surface in growth processes is a natural candidate for being described by a
quasi-primary scaling operator of local scale-invariance.

5. Conclusions

In this survey, we have reviewed to what extent one may expect that a phenomenological
description, which has been successfully applied to describe the ageing of magnetic systems
relaxing towards equilibrium steady states, may be extended to more general models where
the stationary states are no longer part of an equilibrium statistical ensemble. This situation
frequently arises in chemical kinetics, see [4, 6, 31, 124, 125], and the consideration of such
systems is of interest in studies of ageing in chemical/biological systems where already the
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intrinsic microscopic dynamics and/or constraints do not admit relaxation towards thermal
equilibrium. It is clear that the study of ageing phenomena without detailed balance still
stands at its very beginning and many open questions remain. In particular, the few models
reviewed here certainly do not exhaust all possibilities for ageing behaviour without detailed
balance but should rather be seen as case studies whose results might suggest further research
problems. This review has already served a useful purpose if it encourages people to
explore more systematically the properties of two-time observables of non-equilibrium systems,
e.g. reaction–diffusion problems or biologically motivated models.

Specifically, the following points should be noted.

(i) The generic scaling form (28) was seen to be satisfied in all models considered. However,
the exponent relation a = b, known to hold for critical systems with detailed balance, is
no longer valid in general; see table 3. For different universality classes, the relation a = b
is either maintained or else broken in different ways. This means that there is no obvious
and general analogue of an universal limit fluctuation–dissipation ratio X∞ (for magnets
one sometimes tries to relate this to a non-equilibrium temperature; see e.g. [33]) even if
such an analogy may be defined for certain subclasses.

(ii) For the uncorrelated initial states which have been considered so far, one observes that the
autocorrelation and autoresponse exponents agree λC = λR . It would be interesting to
see if spatial or temporal disorder in the rates may change that conclusion, as it apparently
happens in diluted magnets [114, 72].

(iii) One of our main questions with respect to ageing systems has been if dynamical scaling
permits an extension to a larger group of local scale transformation [58]. It has turned
out that from the point of view of LSI the responses are the most easy quantities to study.
The long list of examples, see tables 1 and 2, where the two-time autoresponse function
R(t, s) was concluded to be in agreement with LSI, is clear evidence that LSI is indeed
a successful phenomenological scheme, and this for values of the dynamical exponent z
which are often far from z = 2 characterizing simple diffusive motion. But this ansatz
remains to be proven, especially for z �= 2, for example from some underlying stochastic
Langevin equation. The exactly solvable examples we have treated suggest that the idea of
splitting the Langevin equation in a ‘deterministic’ part with possible non-trivial dynamical
symmetries and a ‘noise’ part which breaks those can be taken over from magnets to more
general reaction–diffusion-type systems, although the noise terms can be considerably
more general.
The examples studied here also suggest that the basic physical variables of these models,
such as the particle density or the height of the surface, should be directly relatable to the
quasi-primary scaling operators of LSI.

It appears to us that it should be promising to investigate more systematically the foundations
and consequences of a hitherto unsuspected non-trivial dynamical symmetry in scale-invariant
non-equilibrium dynamics.
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[27] Cannas S A, Stariolo D A and Tamarit F A 2001 Physica A 294 362
[28] Cardy J L 1990 Fields, Strings and Critical Phenomena (Les Houches vol XLIX) ed E Brézin and
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[29] Cardy J L and Täuber U C 1996 Phys. Rev. Lett. 77 4780
[30] Cates M E and Evans M R (ed) 2000 Soft and Fragile Matter (Bristol: IOP Press)
[31] Coppey M, Bénichou O, Klafter J, Moreau M and Oshanin G 2004 Phys. Rev. E 69 036115
[32] Crisanti A and Ritort F 2003 J. Phys. A: Math. Gen. 36 R181
[33] Cugliandolo L F 2003 Slow Relaxation and Non Equilibrium Dynamics in Condensed Matter (July 2002) (Les

Houches Session 77) ed J-L Barrat, J Dalibard, J Kurchan and M V Feigel’man (Berlin: Springer) (Preprint
cond-mat/0210312)

[34] Cugliandolo L F, Kurchan J and Parisi G 1994 J. Physique I 4 1641
[35] de Dominicis C and Peliti L 1978 Phys. Rev. B 18 353
[36] Doi M 1976 J. Phys. A: Math. Gen. 9 1465

Doi M 1976 J. Phys. A: Math. Gen. 9 1479
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